

Paperless

Paperless is a simple Django application running in two parts:
a consumer (the thing that does the indexing) and
the webserver (the part that lets you search &
download already-indexed documents). If you want to learn more about its
functions keep on reading after the installation section.

Why This Exists

Paper is a nightmare. Environmental issues aside, there’s no excuse for it in
the 21st century. It takes up space, collects dust, doesn’t support any form
of a search feature, indexing is tedious, it’s heavy and prone to damage &
loss.

I wrote this to make “going paperless” easier. I do not have to worry about
finding stuff again. I feed documents right from the post box into the scanner
and then shred them. Perhaps you might find it useful too.

Contents

	Requirements
	Problems with Imagemagick & PDFs

	Python-specific Requirements: No Virtualenv

	Python-specific Requirements: Virtualenv

	Documentation

	Setup
	Download

	Installation & Configuration

	Making Things a Little more Permanent

	Consumption
	The Consumption Directory

	IMAP (Email)

	HTTP POST

	The REST API
	Uploading

	Utilities
	The Webserver

	The Consumer

	The Exporter

	The Importer

	The Re-tagger

	Guesswork
	File Naming

	Reading the Document Contents

	Migrating, Updates, and Backups
	Backing Up

	Restoring

	Updates

	Customising Paperless
	Overrides

	Extending Paperless
	Parsers

	Troubleshooting
	Consumer warns OCR for XX failed

	Consumer dies with convert: unable to extent pixel cache

	DecompressionBombWarning and/or no text in the OCR output

	Contributing to Paperless
	How to Get Your Changes Rolled Into Paperless

	The Code of Conduct

	Scanner Recommendations

	Changelog
	2.7.0

	2.6.1

	2.6.0

	2.5.0

	2.4.0

	2.3.0

	2.2.1

	2.2.0

	2.1.0

	2.0.0

	1.4.0

	1.3.0

	1.2.0

	1.1.0

	1.0.0

	0.8.0

	0.7.0

	0.6.0

	0.5.0

	0.4.1

	0.4.0

	0.3.6

	0.3.5

	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.0

	0.1.1

	0.1.0

	0.0.6

	0.0.5

	0.0.4

	0.0.3

	0.0.2

	0.0.1

Requirements

You need a Linux machine or Unix-like setup (theoretically an Apple machine
should work) that has the following software installed:

	Python3 [https://python.org/] (with development libraries, pip and virtualenv)

	GNU Privacy Guard [https://gnupg.org]

	Tesseract [https://github.com/tesseract-ocr], plus its language files matching your document base.

	Imagemagick [http://imagemagick.org/] version 6.7.5 or higher

	unpaper [https://www.flameeyes.eu/projects/unpaper]

	libpoppler-cpp-dev [https://poppler.freedesktop.org/] PDF rendering library

	optipng [http://optipng.sourceforge.net/]

Notably, you should confirm how you access your Python3 installation. Many
Linux distributions will install Python3 in parallel to Python2, using the
names python3 and python respectively. The same goes for pip3 and
pip. Running Paperless with Python2 will likely break things, so make sure
that you’re using the right version.

For the purposes of simplicity, python and pip is used everywhere to
refer to their Python3 versions.

In addition to the above, there are a number of Python requirements, all of
which are listed in a file called requirements.txt in the project root
directory.

If you’re not working on a virtual environment (like Docker), you
should probably be using a virtualenv, but that’s your call. The reasons why
you might choose a virtualenv or not aren’t really within the scope of this
document. Needless to say if you don’t know what a virtualenv is, you should
probably figure that out before continuing.

Problems with Imagemagick & PDFs

Some users have run into problems [https://github.com/danielquinn/paperless/issues/25] with getting ImageMagick to do its thing
with PDFs. Often this is the case with Apple systems using HomeBrew, but other
Linuxes have been a problem as well. The solution appears to be to install
ghostscript as well as ImageMagick:

$ brew install ghostscript
$ brew install imagemagick
$ brew install libmagic

Python-specific Requirements: No Virtualenv

If you don’t care to use a virtual env, then installation of the Python
dependencies is easy:

$ pip install --user --requirement /path/to/paperless/requirements.txt

This will download and install all of the requirements into
${HOME}/.local. Remember that your distribution may be using pip3 as
mentioned above.

Python-specific Requirements: Virtualenv

Using a virtualenv for this is pretty straightforward: create a virtualenv,
enter it, and install the requirements using the requirements.txt file:

$ virtualenv --python=/path/to/python3 /path/to/arbitrary/directory
$. /path/to/arbitrary/directory/bin/activate
$ pip install --requirement /path/to/paperless/requirements.txt

Now you’re ready to go. Just remember to enter (activate) your virtualenv
whenever you want to use Paperless.

Documentation

As generation of the documentation is not required for the use of Paperless,
dependencies for this process are not included in requirements.txt. If
you’d like to generate your own docs locally, you’ll need to:

$ pip install sphinx

and then cd into the docs directory and type make html.

If you are using Docker, you can use the following commands to build the
documentation and run a webserver serving it on port 8001 [http://127.0.0.1:8001]:

$ pwd
/path/to/paperless

$ docker build -t paperless:docs -f docs/Dockerfile .
$ docker run --rm -it -p "8001:8000" paperless:docs

Setup

Paperless isn’t a very complicated app, but there are a few components, so some
basic documentation is in order. If you follow along in this document and
still have trouble, please open an issue on GitHub [https://github.com/danielquinn/paperless/issues] so I can fill in the
gaps.

Download

The source is currently only available via GitHub, so grab it from there,
either by using git:

$ git clone https://github.com/danielquinn/paperless.git
$ cd paperless

or just download the tarball and go that route:

$ cd to the directory where you want to run Paperless
$ wget https://github.com/danielquinn/paperless/archive/master.zip
$ unzip master.zip
$ cd paperless-master

Installation & Configuration

You can go multiple routes with setting up and running Paperless:

	The bare metal route

	The docker route

The docker route is quick & easy.

The bare metal route is a bit more complicated to setup but makes it easier
should you want to contribute some code back.

Standard (Bare Metal)

	Install the requirements as per the requirements page.

	Within the extract of master.zip go to the src directory.

	Copy ../paperless.conf.example to /etc/paperless.conf and open it in
your favourite editor. As this file contains passwords. It should only be
readable by user root and paperless! Set the values for:

Set the values for:

	PAPERLESS_CONSUMPTION_DIR: this is where your documents will be
dumped to be consumed by Paperless.

	PAPERLESS_OCR_THREADS: this is the number of threads the OCR process
will spawn to process document pages in parallel.

	PAPERLESS_PASSPHRASE: this is only required if you want to use GPG to
encrypt your document files. This is the passphrase Paperless uses to
encrypt/decrypt the original documents. Don’t worry about defining this
if you don’t want to use encryption (the default).

Note also that if you’re using the runserver as mentioned below, you
should make sure that PAPERLESS_DEBUG=”true” or is just commented out as
this is the default.

	Initialise the SQLite database with ./manage.py migrate.

	Create a user for your Paperless instance with
./manage.py createsuperuser. Follow the prompts to create your user.

	Start the webserver with ./manage.py runserver <IP>:<PORT>.
If no specific IP or port is given, the default is 127.0.0.1:8000 also
known as http://localhost:8000/.
You should now be able to visit your (empty) installation at
Paperless webserver [http://127.0.0.1:8000] or whatever you chose before. You can login with the
user/pass you created in #5.

	In a separate window, change to the src directory in this repo again,
but this time, you should start the consumer script with
./manage.py document_consumer.

	Scan something or put a file into the CONSUMPTION_DIR.

	Wait a few minutes

	Visit the document list on your webserver, and it should be there, indexed
and downloadable.

Caution

This installation is not secure. Once everything is working head over to
Making things more permanent

Docker Method

	Install Docker [https://www.docker.com/].

Caution

As mentioned earlier, this guide assumes that you use Docker natively
under Linux. If you are using Docker Machine [https://docs.docker.com/machine/] under Mac OS X or
Windows, you will have to adapt IP addresses, volume-mounting, command
execution and maybe more.

	Install docker-compose [https://docs.docker.com/compose/install/]. 1

Caution

If you want to use the included docker-compose.yml.example file, you
need to have at least Docker version 1.10.0 and docker-compose
version 1.6.0.

See the Docker installation guide [https://docs.docker.com/engine/installation/] on how to install the current
version of Docker for your operating system or Linux distribution of
choice. To get an up-to-date version of docker-compose, follow the
docker-compose installation guide [https://docs.docker.com/compose/install/] if your package repository doesn’t
include it.

	Create a copy of docker-compose.yml.example as docker-compose.yml
and a copy of docker-compose.env.example as docker-compose.env.
You’ll be editing both these files: taking a copy ensures that you can
git pull to receive updates without risking merge conflicts with your
modified versions of the configuration files.

	Modify docker-compose.yml to your preferences, following the
instructions in comments in the file. The only change that is a hard
requirement is to specify where the consumption directory should
mount.[#dockercomposeyml]_

Caution

	If you are using NFS mounts for the consume directory you also need to

	change the command to turn off inotify as it doesn’t work with NFS

command: [“document_consumer”, “–no-inotify”]

	Modify docker-compose.env and adapt the following environment variables:

	PAPERLESS_PASSPHRASE

	This is the passphrase Paperless uses to encrypt/decrypt the original
document. If you aren’t planning on using GPG encryption, you can just
leave this undefined.

	PAPERLESS_OCR_THREADS

	This is the number of threads the OCR process will spawn to process
document pages in parallel. If the variable is not set, Python determines
the core-count of your CPU and uses that value.

	PAPERLESS_OCR_LANGUAGES

	If you want the OCR to recognize other languages in addition to the
default English, set this parameter to a space separated list of
three-letter language-codes after ISO 639-2/T [https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes]. For a list of available
languages – including their three letter codes – see the
Alpine packagelist [https://pkgs.alpinelinux.org/packages?name=tesseract-ocr-data*&arch=x86_64].

	USERMAP_UID and USERMAP_GID

	If you want to mount the consumption volume (directory /consume within
the containers) to a host-directory – which you probably want to do –
access rights might be an issue. The default user and group paperless
in the containers have an id of 1000. The containers will enforce that the
owning group of the consumption directory will be paperless to be able
to delete consumed documents. If your host-system has a group with an ID
of 1000 and you don’t want this group to have access rights to the
consumption directory, you can use USERMAP_GID to change the id in the
container and thus the one of the consumption directory. Furthermore, you
can change the id of the default user as well using USERMAP_UID.

	Run docker-compose up -d. This will create and start the necessary
containers.

	To be able to login, you will need a super user. To create it, execute the
following command:

$ docker-compose run --rm webserver createsuperuser

This will prompt you to set a username (default paperless), an optional
e-mail address and finally a password.

	The default docker-compose.yml exports the webserver on your local port
8000. If you haven’t adapted this, you should now be able to visit your
Paperless webserver [http://127.0.0.1:8000] at http://127.0.0.1:8000. You can login with the
user and password you just created.

	Add files to consumption directory the way you prefer to. Following are two
possible options:

	Mount the consumption directory to a local host path by modifying your
docker-compose.yml:

diff --git a/docker-compose.yml b/docker-compose.yml
--- a/docker-compose.yml
+++ b/docker-compose.yml
@@ -17,9 +18,8 @@ services:
 volumes:
 - paperless-data:/usr/src/paperless/data
 - paperless-media:/usr/src/paperless/media
- - /consume
+ - /local/path/you/choose:/consume

Danger

While the consumption container will ensure at startup that it can
delete a consumed file from a host-mounted directory, it might
not be able to read the document in the first place if the access
rights to the file are incorrect.

Make sure that the documents you put into the consumption directory
will either be readable by everyone (chmod o+r file.pdf) or
readable by the default user or group id 1000 (or the one you have
set with USERMAP_UID or USERMAP_GID respectively).

	Use docker cp to copy your files directly into the container:

$ # Identify your containers
$ docker-compose ps
 Name Command State Ports

paperless_consumer_1 /sbin/docker-entrypoint.sh ... Exit 0
paperless_webserver_1 /sbin/docker-entrypoint.sh ... Exit 0

$ docker cp /path/to/your/file.pdf paperless_consumer_1:/consume

docker cp is a one-shot-command, just like cp. This means that
every time you want to consume a new document, you will have to execute
docker cp again. You can of course automate this process, but option
1 is generally the preferred one.

Danger

docker cp will change the owning user and group of a copied file
to the acting user at the destination, which will be root.

You therefore need to ensure that the documents you want to copy into
the container are readable by everyone (chmod o+r file.pdf)
before copying them.

	1

	You of course don’t have to use docker-compose, but it
simplifies deployment immensely. If you know your way around Docker, feel
free to tinker around without using compose!

	2

	If you’re upgrading your docker-compose images from
version 1.1.0 or earlier, you might need to change in the
docker-compose.yml file the image: pitkley/paperless directive in
both the webserver and consumer sections to build: ./ as per the
newer docker-compose.yml.example file

Making Things a Little more Permanent

Once you’ve tested things and are happy with the work flow, you should secure
the installation and automate the process of starting the webserver and
consumer.

Using a Real Webserver

The default is to use Django’s development server, as that’s easy and does the
job well enough on a home network. However it is heavily discouraged to use
it for more than that.

If you want to do things right you should use a real webserver capable of
handling more than one thread. You will also have to let the webserver serve
the static files (CSS, JavaScript) from the directory configured in
PAPERLESS_STATICDIR. The default static files directory is ../static.

For that you need to activate your virtual environment and collect the static
files with the command:

$ cd <paperless directory>/src
$./manage.py collectstatic

Apache

This is a configuration supplied by steckerhalter [https://github.com/steckerhalter] on GitHub. It uses Apache
and mod_wsgi, with a Paperless installation in /home/paperless/:

<VirtualHost *:80>
 ServerName example.com

 Alias /static/ /home/paperless/paperless/static/
 <Directory /home/paperless/paperless/static>
 Require all granted
 </Directory>

 WSGIScriptAlias / /home/paperless/paperless/src/paperless/wsgi.py
 WSGIDaemonProcess example.com user=paperless group=paperless threads=5 python-path=/home/paperless/paperless/src:/home/paperless/.env/lib/python3.4/site-packages
 WSGIProcessGroup example.com

 <Directory /home/paperless/paperless/src/paperless>
 <Files wsgi.py>
 Require all granted
 </Files>
 </Directory>
</VirtualHost>

Nginx + Gunicorn

If you’re using Nginx, the most common setup is to combine it with a
Python-based server like Gunicorn so that Nginx is acting as a proxy. Below is
a copy of a simple Nginx configuration fragment making use of a gunicorn
instance listening on localhost port 8000.

server {
 listen 80;

 index index.html index.htm index.php;
 access_log /var/log/nginx/paperless_access.log;
 error_log /var/log/nginx/paperless_error.log;

 location /static {

 autoindex on;
 alias <path-to-paperless-static-directory>;

 }

 location / {

 proxy_set_header Host $http_host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_pass http://127.0.0.1:8000;
 }
}

The gunicorn server can be started with the command:

$ <path-to-paperless-virtual-environment>/bin/gunicorn --pythonpath=<path-to-paperless>/src paperless.wsgi -w 2

Standard (Bare Metal + Systemd)

If you’re running on a bare metal system that’s using Systemd, you can use the
service unit files in the scripts directory to set this up.

	You’ll need to create a group and user called paperless (without login)

	Setup Paperless to be in a place that this new user can read and write to.

	Ensure /etc/paperless is readable by the paperless user.

	Copy the service file from the scripts directory to
/etc/systemd/system.

$ cp /path/to/paperless/scripts/paperless-consumer.service /etc/systemd/system/
$ cp /path/to/paperless/scripts/paperless-webserver.service /etc/systemd/system/

	Edit the service file to point the ExecStart line to the proper location
of your paperless install, referencing the appropriate Python binary. For
example:
ExecStart=/path/to/python3 /path/to/paperless/src/manage.py document_consumer.

	Start and enable (so they start on boot) the services.

$ systemctl enable paperless-consumer
$ systemctl enable paperless-webserver
$ systemctl start paperless-consumer
$ systemctl start paperless-webserver

Standard (Bare Metal + Upstart)

Ubuntu 14.04 and earlier use the Upstart [http://upstart.ubuntu.com/] init system to start services
during the boot process. To configure Upstart to run Paperless automatically
after restarting your system:

	Change to the directory where Upstart’s configuration files are kept:
cd /etc/init

	Create a new file: sudo nano paperless-server.conf

	In the newly-created file enter:

start on (local-filesystems and net-device-up IFACE=eth0)
stop on shutdown

respawn
respawn limit 10 5

script
 exec <path to paperless virtual environment>/bin/gunicorn --pythonpath=<path to parperless>/src paperless.wsgi -w 2
end script

Note that you’ll need to replace /srv/paperless/src/manage.py with the
path to the manage.py script in your installation directory.

If you are using a network interface other than eth0, you will have to
change IFACE=eth0. For example, if you are connected via WiFi, you will
likely need to replace eth0 above with wlan0. To see all interfaces,
run ifconfig -a.

Save the file.

	Create a new file: sudo nano paperless-consumer.conf

	In the newly-created file enter:

start on (local-filesystems and net-device-up IFACE=eth0)
stop on shutdown

respawn
respawn limit 10 5

script
 exec <path to paperless virtual environment>/bin/python <path to parperless>/manage.py document_consumer
end script

Replace the path placeholder and eth0 with the appropriate value and save the file.

These two configuration files together will start both the Paperless webserver
and document consumer processes when the file system and network interface
specified is available after boot. Furthermore, if either process ever exits
unexpectedly, Upstart will try to restart it a maximum of 10 times within a 5
second period.

Docker

If you’re using Docker, you can set a restart-policy [https://docs.docker.com/engine/reference/commandline/run/#restart-policies-restart] in the
docker-compose.yml to have the containers automatically start with the
Docker daemon.

Consumption

Once you’ve got Paperless setup, you need to start feeding documents into it.
Currently, there are three options: the consumption directory, IMAP (email), and
HTTP POST.

The Consumption Directory

The primary method of getting documents into your database is by putting them in
the consumption directory. The document_consumer script runs in an infinite
loop looking for new additions to this directory and when it finds them, it goes
about the process of parsing them with the OCR, indexing what it finds, and
encrypting the PDF (if PAPERLESS_PASSPHRASE is set), storing it in the
media directory.

Getting stuff into this directory is up to you. If you’re running Paperless
on your local computer, you might just want to drag and drop files there, but if
you’re running this on a server and want your scanner to automatically push
files to this directory, you’ll need to setup some sort of service to accept the
files from the scanner. Typically, you’re looking at an FTP server like
Proftpd [http://www.proftpd.org/] or Samba [http://www.samba.org/].

So where is this consumption directory? It’s wherever you define it. Look for
the CONSUMPTION_DIR value in settings.py. Set that to somewhere
appropriate for your use and put some documents in there. When you’re ready,
follow the consumer instructions to get it running.

Hooking into the Consumption Process

Sometimes you may want to do something arbitrary whenever a document is
consumed. Rather than try to predict what you may want to do, Paperless lets
you execute scripts of your own choosing just before or after a document is
consumed using a couple simple hooks.

Just write a script, put it somewhere that Paperless can read & execute, and
then put the path to that script in paperless.conf with the variable name
of either PAPERLESS_PRE_CONSUME_SCRIPT or
PAPERLESS_POST_CONSUME_SCRIPT. The script will be executed before or
or after the document is consumed respectively.

Important

These scripts are executed in a blocking process, which means that if
a script takes a long time to run, it can significantly slow down your
document consumption flow. If you want things to run asynchronously,
you’ll have to fork the process in your script and exit.

What Can These Scripts Do?

It’s your script, so you’re only limited by your imagination and the laws of
physics. However, the following values are passed to the scripts in order:

Pre-consumption script

	Document file name

A simple but common example for this would be creating a simple script like
this:

/usr/local/bin/ocr-pdf

#!/usr/bin/env bash
pdf2pdfocr.py -i ${1}

/etc/paperless.conf

...
PAPERLESS_PRE_CONSUME_SCRIPT="/usr/local/bin/ocr-pdf"
...

This will pass the path to the document about to be consumed to /usr/local/bin/ocr-pdf,
which will in turn call pdf2pdfocr.py [https://github.com/LeoFCardoso/pdf2pdfocr] on your document, which will then
overwrite the file with an OCR’d version of the file and exit. At which point,
the consumption process will begin with the newly modified file.

Post-consumption script

	Document id

	Generated file name

	Source path

	Thumbnail path

	Download URL

	Thumbnail URL

	Correspondent

	Tags

The script can be in any language you like, but for a simple shell script
example, you can take a look at post-consumption-example.sh in the
scripts directory in this project.

IMAP (Email)

Another handy way to get documents into your database is to email them to
yourself. The typical use-case would be to be out for lunch and want to send a
copy of the receipt back to your system at home. Paperless can be taught to
pull emails down from an arbitrary account and dump them into the consumption
directory where the process above will follow the
usual pattern on consuming the document.

Some things you need to know about this feature:

	It’s disabled by default. By setting the values below it will be enabled.

	It’s been tested in a limited environment, so it may not work for you (please
submit a pull request if you can!)

	It’s designed to delete mail from the server once consumed. So don’t go
pointing this to your personal email account and wonder where all your stuff
went.

	Currently, only one photo (attachment) per email will work.

So, with all that in mind, here’s what you do to get it running:

	Setup a new email account somewhere, or if you’re feeling daring, create a
folder in an existing email box and note the path to that folder.

	In /etc/paperless.conf set all of the appropriate values in
PATHS AND FOLDERS and SECURITY.
If you decided to use a subfolder of an existing account, then make sure you
set PAPERLESS_CONSUME_MAIL_INBOX accordingly here. You also have to set
the PAPERLESS_EMAIL_SECRET to something you can remember ‘cause you’ll
have to include that in every email you send.

	Restart the consumer. The consumer will check
the configured email account at startup and from then on every 10 minutes
for something new and pulls down whatever it finds.

	Send yourself an email! Note that the subject is treated as the file name,
so if you set the subject to Correspondent - Title - tag,tag,tag, you’ll
get what you expect. Also, you must include the aforementioned secret
string in every email so the fetcher knows that it’s safe to import.
Note that Paperless only allows the email title to consist of safe characters
to be imported. These consist of alpha-numeric characters and -_ ,.'.

	After a few minutes, the consumer will poll your mailbox, pull down the
message, and place the attachment in the consumption directory with the
appropriate name. A few minutes later, the consumer will import it like any
other file.

HTTP POST

You can also submit a document via HTTP POST, so long as you do so after
authenticating. To push your document to Paperless, send an HTTP POST to the
server with the following name/value pairs:

	correspondent: The name of the document’s correspondent. Note that there
are restrictions on what characters you can use here. Specifically,
alphanumeric characters, -, ,, ., and ‘ are ok, everything else is
out. You also can’t use the sequence ` - ` (space, dash, space).

	title: The title of the document. The rules for characters is the same
here as the correspondent.

	document: The file you’re uploading

Specify enctype="multipart/form-data", and then POST your file with:

Content-Disposition: form-data; name="document"; filename="whatever.pdf"

An example of this in HTML is a typical form:

<form method="post" enctype="multipart/form-data">
 <input type="text" name="correspondent" value="My Correspondent" />
 <input type="text" name="title" value="My Title" />
 <input type="file" name="document" />
 <input type="submit" name="go" value="Do the thing" />
</form>

But a potentially more useful way to do this would be in Python. Here we use
the requests library to handle basic authentication and to send the POST data
to the URL.

import os

from hashlib import sha256

import requests
from requests.auth import HTTPBasicAuth

You authenticate via BasicAuth or with a session id.
We use BasicAuth here
username = "my-username"
password = "my-super-secret-password"

Where you have Paperless installed and listening
url = "http://localhost:8000/push"

Document metadata
correspondent = "Test Correspondent"
title = "Test Title"

The local file you want to push
path = "/path/to/some/directory/my-document.pdf"

with open(path, "rb") as f:

 response = requests.post(
 url=url,
 data={"title": title, "correspondent": correspondent},
 files={"document": (os.path.basename(path), f, "application/pdf")},
 auth=HTTPBasicAuth(username, password),
 allow_redirects=False
)

 if response.status_code == 202:

 # Everything worked out ok
 print("Upload successful")

 else:

 # If you don't get a 202, it's probably because your credentials
 # are wrong or something. This will give you a rough idea of what
 # happened.

 print("We got HTTP status code: {}".format(response.status_code))
 for k, v in response.headers.items():
 print("{}: {}".format(k, v))

The REST API

Paperless makes use of the Django REST Framework [http://django-rest-framework.org/] standard API interface
because of its inherent awesomeness. Conveniently, the system is also
self-documenting, so to learn more about the access points, schema, what’s
accepted and what isn’t, you need only visit /api on your local Paperless
installation.

Uploading

File uploads in an API are hard and so far as I’ve been able to tell, there’s
no standard way of accepting them, so rather than crowbar file uploads into the
REST API and endure that headache, I’ve left that process to a simple HTTP
POST, documented on the consumption page.

Utilities

There’s basically three utilities to Paperless: the webserver, consumer, and
if needed, the exporter. They’re all detailed here.

The Webserver

At the heart of it, Paperless is a simple Django webservice, and the entire
interface is based on Django’s standard admin interface. Once running, visiting
the URL for your service delivers the admin, through which you can get a
detailed listing of all available documents, search for specific files, and
download whatever it is you’re looking for.

How to Use It

The webserver is started via the manage.py script:

$ /path/to/paperless/src/manage.py runserver

By default, the server runs on localhost, port 8000, but you can change this
with a few arguments, run manage.py --help for more information.

Add the option --noreload to reduce resource usage. Otherwise, the server
continuously polls all source files for changes to auto-reload them.

Note that when exiting this command your webserver will disappear.
If you want to run this full-time (which is kind of the point)
you’ll need to have it start in the background – something you’ll need to
figure out for your own system. To get you started though, there are Systemd
service files in the scripts directory.

The Consumer

The consumer script runs in an infinite loop, constantly looking at a directory
for documents to parse and index. The process is pretty straightforward:

	Look in CONSUMPTION_DIR for a document. If one is found, go to #2.
If not, wait 10 seconds and try again. On Linux, new documents are detected
instantly via inotify, so there’s no waiting involved.

	Parse the document with Tesseract

	Create a new record in the database with the OCR’d text

	Attempt to automatically assign document attributes by doing some guesswork.
Read up on the guesswork documentation for more
information about this process.

	Encrypt the document (if you have a passphrase set) and store it in the
media directory under documents/originals.

	Go to #1.

How to Use It

The consumer is started via the manage.py script:

$ /path/to/paperless/src/manage.py document_consumer

This starts the service that will consume documents as they appear in
CONSUMPTION_DIR.

Note that this command runs continuously, so exiting it will mean your webserver
disappears. If you want to run this full-time (which is kind of the point)
you’ll need to have it start in the background – something you’ll need to
figure out for your own system. To get you started though, there are Systemd
service files in the scripts directory.

Some command line arguments are available to customize the behavior of the
consumer. By default it will use /etc/paperless.conf values. Display the
help with:

$ /path/to/paperless/src/manage.py document_consumer --help

The Exporter

Tired of fiddling with Paperless, or just want to do something stupid and are
afraid of accidentally damaging your files? You can export all of your
documents into neatly named, dated, and unencrypted files.

How to Use It

This too is done via the manage.py script:

$ /path/to/paperless/src/manage.py document_exporter /path/to/somewhere/

This will dump all of your unencrypted documents into /path/to/somewhere
for you to do with as you please. The files are accompanied with a special
file, manifest.json which can be used to import the files at a later date if you wish.

Docker

If you are using Docker, running the
expoorter is almost as easy. To mount a volume for exports, follow the
instructions in the docker-compose.yml.example file for the /export
volume (making the changes in your own docker-compose.yml file, of course).
Once you have the volume mounted, the command to run an export is:

$ docker-compose run --rm consumer document_exporter /export

If you prefer to use docker run directly, supplying the necessary commandline
options:

$ # Identify your containers
$ docker-compose ps
 Name Command State Ports

paperless_consumer_1 /sbin/docker-entrypoint.sh ... Exit 0
paperless_webserver_1 /sbin/docker-entrypoint.sh ... Exit 0

$ # Make sure to replace your passphrase and remove or adapt the id mapping
$ docker run --rm \
 --volumes-from paperless_data_1 \
 --volume /path/to/arbitrary/place:/export \
 -e PAPERLESS_PASSPHRASE=YOUR_PASSPHRASE \
 -e USERMAP_UID=1000 -e USERMAP_GID=1000 \
 paperless document_exporter /export

The Importer

Looking to transfer Paperless data from one instance to another, or just want
to restore from a backup? This is your go-to toy.

How to Use It

The importer works just like the exporter. You point it at a directory, and
the script does the rest of the work:

$ /path/to/paperless/src/manage.py document_importer /path/to/somewhere/

Docker

Assuming that you’ve already gone through the steps above in the
export section, then the easiest thing
to do is just re-use the /export path you already setup:

$ docker-compose run --rm consumer document_importer /export

Similarly, if you’re not using docker-compose, you can adjust the export
instructions above to do the import.

The Re-tagger

Say you’ve imported a few hundred documents and now want to introduce a tag
and apply its matching to all of the currently-imported docs. This problem is
common enough that there’s a tool for it.

How to Use It

This too is done via the manage.py script:

$ /path/to/paperless/src/manage.py document_retagger

That’s it. It’ll loop over all of the documents in your database and attempt
to match all of your tags to them. If one matches, it’ll be applied. And
don’t worry, you can run this as often as you like, it won’t double-tag
a document.

Guesswork

During the consumption process, Paperless tries to guess some of the attributes
of the document it’s looking at. To do this it uses two approaches:

File Naming

Any document you put into the consumption directory will be consumed, but if
you name the file right, it’ll automatically set some values in the database
for you. This is is the logic the consumer follows:

	Try to find the correspondent, title, and tags in the file name following
the pattern: Date - Correspondent - Title - tag,tag,tag.pdf. Note that
the format of the date is rigidly defined as YYYYMMDDHHMMSSZ or
YYYYMMDDZ. The Z refers “Zulu time” AKA “UTC”.
The tags are optional, so the format Date - Correspondent - Title.pdf
works as well.

	If that doesn’t work, we skip the date and try this pattern:
Correspondent - Title - tag,tag,tag.pdf.

	If that doesn’t work, we try to find the correspondent and title in the file
name following the pattern: Correspondent - Title.pdf.

	If that doesn’t work, just assume that the name of the file is the title.

So given the above, the following examples would work as you’d expect:

	20150314000700Z - Some Company Name - Invoice 2016-01-01 - money,invoices.pdf

	20150314Z - Some Company Name - Invoice 2016-01-01 - money,invoices.pdf

	Some Company Name - Invoice 2016-01-01 - money,invoices.pdf

	Another Company - Letter of Reference.jpg

	Dad's Recipe for Pancakes.png

These however wouldn’t work:

	2015-03-14 00:07:00 UTC - Some Company Name, Invoice 2016-01-01, money, invoices.pdf

	2015-03-14 - Some Company Name, Invoice 2016-01-01, money, invoices.pdf

	Some Company Name, Invoice 2016-01-01, money, invoices.pdf

	Another Company- Letter of Reference.jpg

Do I have to be so strict about naming?

Rather than using the strict document naming rules, one can also set the option
PAPERLESS_FILENAME_DATE_ORDER in paperless.conf to any date order
that is accepted by dateparser [https://github.com/scrapinghub/dateparser/blob/v0.7.0/docs/usage.rst#settings]. Doing so will cause paperless to default
to any date format that is found in the title, instead of a date pulled from
the document’s text, without requiring the strict formatting of the document
filename as described above.

Reading the Document Contents

After the consumer has tried to figure out what it could from the file name,
it starts looking at the content of the document itself. It will compare the
matching algorithms defined by every tag and correspondent already set in your
database to see if they apply to the text in that document. In other words,
if you defined a tag called Home Utility that had a match property of
bc hydro and a matching_algorithm of literal, Paperless will
automatically tag your newly-consumed document with your Home Utility tag
so long as the text bc hydro appears in the body of the document somewhere.

The matching logic is quite powerful, and supports searching the text of your
document with different algorithms, and as such, some experimentation may be
necessary to get things Just Right.

How Do I Set Up These Matching Algorithms?

Setting up of the algorithms is easily done through the admin interface. When
you create a new correspondent or tag, there are optional fields for matching
text and matching algorithm. From the help info there:

Note

Which algorithm you want to use when matching text to the OCR’d PDF. Here,
“any” looks for any occurrence of any word provided in the PDF, while “all”
requires that every word provided appear in the PDF, albeit not in the
order provided. A “literal” match means that the text you enter must
appear in the PDF exactly as you’ve entered it, and “regular expression”
uses a regex to match the PDF. If you don’t know what a regex is, you
probably don’t want this option.

When using the “any” or “all” matching algorithms, you can search for terms
that consist of multiple words by enclosing them in double quotes. For example,
defining a match text of "Bank of America" BofA using the “any” algorithm,
will match documents that contain either “Bank of America” or “BofA”, but will
not match documents containing “Bank of South America”.

Then just save your tag/correspondent and run another document through the
consumer. Once complete, you should see the newly-created document,
automatically tagged with the appropriate data.

Migrating, Updates, and Backups

As Paperless is still under active development, there’s a lot that can change
as software updates roll out. You should backup often, so if anything goes
wrong during an update, you at least have a means of restoring to something
usable. Thankfully, there are automated ways of backing up, restoring, and
updating the software.

Backing Up

So you’re bored of this whole project, or you want to make a remote backup of
your files for whatever reason. This is easy to do, simply use the
exporter to dump your documents and database out
into an arbitrary directory.

Restoring

Restoring your data is just as easy, since nearly all of your data exists either
in the file names, or in the contents of the files themselves. You just need to
create an empty database (just follow the
installation instructions again) and then import the
tags.json file you created as part of your backup. Lastly, copy your
exported documents into the consumption directory and start up the consumer.

$ cd /path/to/project
$ rm data/db.sqlite3 # Delete the database
$ cd src
$./manage.py migrate # Create the database
$./manage.py createsuperuser
$./manage.py loaddata /path/to/arbitrary/place/tags.json
$ cp /path/to/exported/docs/* /path/to/consumption/dir/
$./manage.py document_consumer

Importing your data if you are using Docker
is almost as simple:

Stop and remove your current containers
$ docker-compose stop
$ docker-compose rm -f

Recreate them, add the superuser
$ docker-compose up -d
$ docker-compose run --rm webserver createsuperuser

Load the tags
$ cat /path/to/arbitrary/place/tags.json | docker-compose run --rm webserver loaddata_stdin -

Load your exported documents into the consumption directory
(How you do this highly depends on how you have set this up)
$ cp /path/to/exported/docs/* /path/to/mounted/consumption/dir/

After loading the documents into the consumption directory the consumer will
immediately start consuming the documents.

Updates

For the most part, all you have to do to update Paperless is run git pull
on the directory containing the project files, and then use Django’s
migrate command to execute any database schema updates that might have been
rolled in as part of the update:

$ cd /path/to/project
$ git pull
$ pip install -r requirements.txt
$ cd src
$./manage.py migrate

Note that it’s possible (even likely) that while git pull may update some
files, the migrate step may not update anything. This is totally normal.

Additionally, as new features are added, the ability to control those features
is typically added by way of an environment variable set in paperless.conf.
You may want to take a look at the paperless.conf.example file to see if
there’s anything new in there compared to what you’ve got int /etc.

If you are using Docker the update process
is similar:

$ cd /path/to/project
$ git pull
$ docker build -t paperless .
$ docker-compose run --rm consumer migrate
$ docker-compose up -d

If git pull doesn’t report any changes, there is no need to continue with
the remaining steps.

Customising Paperless

Currently, the Paperless’ interface is just the default Django admin, which
while powerful, is rather boring. If you’d like to give the site a bit of a
face-lift, or if you simply want to adjust the colours, contrast, or font size
to make things easier to read, you can do that by adding your own CSS or
Javascript quite easily.

Overrides

On every page load, Paperless looks for two files in your media root directory
(the directory defined by your PAPERLESS_MEDIADIR configuration variable or
the default, <project root>/media/) for two files:

	overrides.css

	overrides.js

If it finds either or both of those files, they’ll be loaded into the page: the
CSS in the <head>, and the Javascript stuffed into the last line of the
<body>.

An important note about customisation

Any changes you make to the site with your CSS or Javascript are likely to
depend on the structure of the current HTML and/or the existing CSS rules. For
the most part it’s safe to assume that these bits won’t change, but sometimes
they do as features are added or bugs are fixed.

If you make a change that you think others would appreciate though, submit it
as a pull request and maybe we can find a way to work it into the project by
default!

Extending Paperless

For the most part, Paperless is monolithic, so extending it is often best
managed by way of modifying the code directly and issuing a pull request on
GitHub [https://github.com/danielquinn/paperless]. However, over time the project has been evolving to be a little
more “pluggable” so that users can write their own stuff that talks to it.

Parsers

You can leverage Paperless’ consumption model to have it consume files other
than ones handled by default like .pdf, .jpg, and .tiff. To do so,
you simply follow Django’s convention of creating a new app, with a few key
requirements.

parsers.py

In this file, you create a class that extends
documents.parsers.DocumentParser and go about implementing the three
required methods:

	get_thumbnail(): Returns the path to a file we can use as a thumbnail for
this document.

	get_text(): Returns the text from the document and only the text.

	get_date(): If possible, this returns the date of the document, otherwise
it should return None.

signals.py

At consumption time, Paperless emits a document_consumer_declaration
signal which your module has to react to in order to let the consumer know
whether or not it’s capable of handling a particular file. Think of it like
this:

	Consumer finds a file in the consumption directory.

	It asks all the available parsers: “Hey, can you handle this file?”

	Each parser responds with either None meaning they can’t handle the
file, or a dictionary in the following format:

{
 "parser": <the class name>,
 "weight": <an integer>
}

The consumer compares the weight values from all respondents and uses the
class with the highest value to consume the document. The default parser,
RasterisedDocumentParser has a weight of 0.

apps.py

This is a standard Django file, but you’ll need to add some code to it to
connect your parser to the document_consumer_declaration signal.

Finally

The last step is to update settings.py to include your new module.
Eventually, this will be dynamic, but at the moment, you have to edit the
INSTALLED_APPS section manually. Simply add the path to your AppConfig to
the list like this:

INSTALLED_APPS = [
 ...
 "my_module.apps.MyModuleConfig",
 ...
]

Order doesn’t matter, but generally it’s a good idea to place your module lower
in the list so that you don’t end up accidentally overriding project defaults
somewhere.

An Example

The core Paperless functionality is based on this design, so if you want to see
what a parser module should look like, have a look at parsers.py [https://github.com/danielquinn/paperless/blob/master/src/paperless_tesseract/parsers.py],
signals.py [https://github.com/danielquinn/paperless/blob/master/src/paperless_tesseract/signals.py], and apps.py [https://github.com/danielquinn/paperless/blob/master/src/paperless_tesseract/apps.py] in the paperless_tesseract [https://github.com/danielquinn/paperless/blob/master/src/paperless_tesseract/] module.

Troubleshooting

Consumer warns OCR for XX failed

If you find the OCR accuracy to be too low, and/or the document consumer warns
that OCR for XX failed, but we're going to stick with what we've got since
FORGIVING_OCR is enabled, then you might need to install the
Tesseract language files [http://packages.ubuntu.com/search?keywords=tesseract-ocr]
marching your document’s languages.

As an example, if you are running Paperless from any Ubuntu or Debian
box, and your documents are written in Spanish you may need to run:

apt-get install -y tesseract-ocr-spa

Consumer dies with convert: unable to extent pixel cache

During the consumption process, Paperless invokes ImageMagick’s convert
program to translate the source document into something that the OCR engine can
understand and this can burn a Very Large amount of memory if the original
document is rather long. Similarly, if your system doesn’t have a lot of
memory to begin with (ie. a Raspberry Pi), then this can happen for even
medium-sized documents.

The solution is to tell ImageMagick not to Use All The RAM, as is its
default, and instead tell it to used a fixed amount. convert will then
break up the job into hundreds of individual files and use them to slowly
compile the finished image. Simply set PAPERLESS_CONVERT_MEMORY_LIMIT in
/etc/paperless.conf to something like 32000000 and you’ll limit
convert to 32MB. Fiddle with this value as you like.

HOWEVER: Simply setting this value may not be enough on system where
/tmp is mounted as tmpfs, as this is where convert will write its
temporary files. In these cases (most Systemd machines), you need to tell
ImageMagick to use a different space for its scratch work. You do this by
setting PAPERLESS_CONVERT_TMPDIR in /etc/paperless.conf to somewhere
that’s actually on a physical disk (and writable by the user running
Paperless), like /var/tmp/paperless or /home/my_user/tmp in a pinch.

DecompressionBombWarning and/or no text in the OCR output

Some users have had issues using Paperless to consume PDFs that were created
by merging Very Large Scanned Images into one PDF. If this happens to you,
it’s likely because the PDF you’ve created contains some very large pages
(millions of pixels) and the process of converting the PDF to a OCR-friendly
image is exploding.

Typically, this happens because the scanned images are created with a high
DPI and then rolled into the PDF with an assumed DPI of 72 (the default).
The best solution then is to specify the DPI used in the scan in the
conversion-to-PDF step. So for example, if you scanned the original image
with a DPI of 300, then merging the images into the single PDF with
convert should look like this:

$ convert -density 300 *.jpg finished.pdf

For more information on this and situations like it, you should take a look
at Issue #118 [https://github.com/danielquinn/paperless/issues/118] as that’s where this tip originated.

Contributing to Paperless

Maybe you’ve been using Paperless for a while and want to add a feature or two,
or maybe you’ve come across a bug that you have some ideas how to solve. The
beauty of Free software is that you can see what’s wrong and help to get it
fixed for everyone!

How to Get Your Changes Rolled Into Paperless

If you’ve found a bug, but don’t know how to fix it, you can always post an
issue on GitHub [https://github.com/danielquinn/paperless/issues] in the hopes that someone will have the time to fix it for
you. If however you’re the one with the time, pull requests are always
welcome, you just have to make sure that your code conforms to a few standards:

Pep8

It’s the standard for all Python development, so it’s very well documented [https://www.python.org/dev/peps/pep-0008/].
The short version is:

	Lines should wrap at 79 characters

	Use snake_case for variables, CamelCase for classes, and ALL_CAPS
for constants.

	Space out your operators: stuff + 7 instead of stuff+7

	Two empty lines between classes, and functions, but 1 empty line between
class methods.

There’s more to it than that, but if you follow those, you’ll probably be
alright. When you submit your pull request, there’s a pep8 checker that’ll
look at your code to see if anything is off. If it finds anything, it’ll
complain at you until you fix it.

Additional Style Guides

Where pep8 is ambiguous, I’ve tried to be a little more specific. These rules
aren’t hard-and-fast, but if you can conform to them, I’ll appreciate it and
spend less time trying to conform your PR before merging:

Function calls

If you’re calling a function and that necessitates more than one line of code,
please format it like this:

my_function(
 argument1,
 kwarg1="x",
 kwarg2="y"
 another_really_long_kwarg="some big value"
 a_kwarg_calling_another_long_function=another_function(
 another_arg,
 another_kwarg="kwarg!"
)
)

This is all in the interest of code uniformity rather than anything else. If
we stick to a style, everything is understandable in the same way.

Quoting Strings

pep8 is a little too open-minded on this for my liking. Python strings should
be quoted with double quotes (") except in cases where the resulting string
would require too much escaping of a double quote, in which case, a single
quoted, or triple-quoted string will do:

my_string = "This is my string"
problematic_string = 'This is a "string" with "quotes" in it'

In HTML templates, please use double-quotes for tag attributes, and single
quotes for arguments passed to Django tempalte tags:

<div class="stuff">
 link this
</div>

This is to keep linters happy they look at an HTML file and see an attribute
closing the " before it should have been.

–

That’s all there is in terms of guidelines, so I hope it’s not too daunting.

Indentation & Spacing

When it comes to indentation:

	For Python, the rule is: follow pep8 and use 4 spaces.

	For Javascript, CSS, and HTML, please use 1 tab.

Additionally, Django templates making use of block elements like {% if %},
{% for %}, and {% block %} etc. should be indented:

Good:

{% block stuff %}
 <h1>This is the stuff</h1>
{% endblock %}

Bad:

{% block stuff %}
<h1>This is the stuff</h1>
{% endblock %}

The Code of Conduct

Paperless has a code of conduct [https://github.com/danielquinn/paperless/blob/master/CODE_OF_CONDUCT.md]. It’s a lot like the other ones you see out
there, with a few small changes, but basically it boils down to:

> Don’t be an ass, or you might get banned.

I’m proud to say that the CoC has never had to be enforced because everyone has
been awesome, friendly, and professional.

Scanner Recommendations

As Paperless operates by watching a folder for new files, doesn’t care what
scanner you use, but sometimes finding a scanner that will write to an FTP,
NFS, or SMB server can be difficult. This page is here to help you find one
that works right for you based on recommentations from other Paperless users.

	Brand

	Model

	Supports

	Recommended By

	
	
	FTP

	NFS

	SMB

	

	Brother

	ADS-1500W [https://www.brother.ca/en/p/ads1500w]

	yes

	no

	yes

	danielquinn [https://github.com/danielquinn]

	Brother

	MFC-J6930DW [https://www.brother.ca/en/p/MFCJ6930DW]

	yes

	
	
	ayounggun [https://github.com/ayounggun]

	Fujitsu

	ix500 [http://www.fujitsu.com/us/products/computing/peripheral/scanners/scansnap/ix500/]

	yes

	
	yes

	eonist [https://github.com/eonist]

Changelog

2.7.0

	syntonym [https://github.com/syntonym] submitted a pull request to catch IMAP connection errors #475 [https://github.com/danielquinn/paperless/pull/475].

	Stéphane Brunner [https://github.com/sbrunner] added psycopg2 to the Pipfile #489 [https://github.com/danielquinn/paperless/pull/489]. He also fixed
a syntax error in docker-compose.yml.example #488 [https://github.com/danielquinn/paperless/pull/488] and added [DjangoQL](https://github.com/ivelum/djangoql),
which allows a litany of handy search functionality #492 [https://github.com/danielquinn/paperless/pull/492].

	CkuT [https://github.com/CkuT] and JOKer [https://github.com/JOKer] hacked out a simple, but super-helpful optimisation to
how the thumbnails are served up, improving performance considerably #481 [https://github.com/danielquinn/paperless/pull/481].

	tsia [https://github.com/tsia] added a few fields to the tags REST API. #483 [https://github.com/danielquinn/paperless/pull/483].

	Brian Cribbs [https://github.com/cribbstechnolog] improved the documentation to help people using Paperless
over NFS #484 [https://github.com/danielquinn/paperless/pull/484].

	Brendan M. Sleight [https://github.com/bmsleight] updated the documentation to include a note for setting the
DEBUG value. The paperless.conf.example file was also updated to
mirror the project defaults.

2.6.1

	We now have a logo, complete with a favicon :-)

	Removed some problematic tests.

	Fix the docker-compose example config to include a shared consume volume so
that using the push API will work for users of the Docker install. Thanks to
Colin Frei [https://github.com/colinfrei] for fixing this in #466 [https://github.com/danielquinn/paperless/pull/466].

	khrise [https://github.com/khrise] submitted a pull request to include the added property to the
REST API #471 [https://github.com/danielquinn/paperless/pull/471].

2.6.0

	Allow an infinite number of logs to be deleted. Thanks to Ulli [https://github.com/Ulli2k] for noting
the problem in #433 [https://github.com/danielquinn/paperless/issues/433].

	Fix the RecentCorrespondentsFilter correspondents filter that was added
in 2.4 to play nice with the defaults. Thanks to tsia [https://github.com/tsia] and Sblop [https://github.com/Sblop] who
pointed this out. #423 [https://github.com/danielquinn/paperless/issues/423].

	Updated dependencies to include (among other things) a security patch to
requests.

	Fix text in sample data for tests so that the language guesser stops thinking
that everything is in Catalan because we had Lorem ipsum in there.

	Tweaked the gunicorn sample command to use filesystem paths instead of Python
paths. #441 [https://github.com/danielquinn/paperless/pull/441]

	Added pretty colour boxes next to the hex values in the Tags section, thanks
to a pull request from Joshua Taillon [https://github.com/jat255] #442 [https://github.com/danielquinn/paperless/pull/442].

	Added a .editorconfig file to better specify coding style.

	Joshua Taillon [https://github.com/jat255] also added some logic to tie Paperless’ date guessing logic
into how it parses file names on import. #440 [https://github.com/danielquinn/paperless/pull/440]

2.5.0

	New dependency: Paperless now optimises thumbnail generation with
optipng [http://optipng.sourceforge.net/], so you’ll need to install that somewhere in your PATH or declare
its location in PAPERLESS_OPTIPNG_BINARY. The Docker image has already
been updated on the Docker Hub, so you just need to pull the latest one from
there if you’re a Docker user.

	“Login free” instances of Paperless were breaking whenever you tried to edit
objects in the admin: adding/deleting tags or correspondents, or even fixing
spelling. This was due to the “user hack” we were applying to sessions that
weren’t using a login, as that hack user didn’t have a valid id. The fix was
to attribute the first user id in the system to this hack user. #394 [https://github.com/danielquinn/paperless/issues/394]

	A problem in how we handle slug values on Tags and Correspondents required a
few changes to how we handle this field #393 [https://github.com/danielquinn/paperless/issues/393]:

	Slugs are no longer editable. They’re derived from the name of the tag or
correspondent at save time, so if you wanna change the slug, you have to
change the name, and even then you’re restricted to the rules of the
slugify() function. The slug value is still visible in the admin
though.

	I’ve added a migration to go over all existing tags & correspondents and
rewrite the .slug values to ones conforming to the slugify()
rules.

	The consumption process now uses the same rules as .save() in
determining a slug and using that to check for an existing
tag/correspondent.

	An annoying bug in the date capture code was causing some bogus dates to be
attached to documents, which in turn busted the UI. Thanks to Andrew Peng [https://github.com/pengc99]
for reporting this. #414 [https://github.com/danielquinn/paperless/issues/414].

	A bug in the Dockerfile meant that Tesseract language files weren’t being
installed correctly. euri10 [https://github.com/euri10] was quick to provide a fix: #406 [https://github.com/danielquinn/paperless/issues/406], #413 [https://github.com/danielquinn/paperless/pull/413].

	Document consumption is now wrapped in a transaction as per an old ticket
#262 [https://github.com/danielquinn/paperless/issues/262].

	The get_date() functionality of the parsers has been consolidated onto
the DocumentParser class since much of that code was redundant anyway.

2.4.0

	A new set of actions are now available thanks to jonaswinkler [https://github.com/jonaswinkler]’s very first
pull request! You can now do nifty things like tag documents in bulk, or set
correspondents in bulk. #405 [https://github.com/danielquinn/paperless/pull/405]

	The import/export system is now a little smarter. By default, documents are
tagged as unencrypted, since exports are by their nature unencrypted.
It’s now in the import step that we decide the storage type. This allows you
to export from an encrypted system and import into an unencrypted one, or
vice-versa.

	The migration history has been slightly modified to accommodate PostgreSQL
users. Additionally, you can now tell paperless to use PostgreSQL simply by
declaring PAPERLESS_DBUSER in your environment. This will attempt to
connect to your Postgres database without a password unless you also set
PAPERLESS_DBPASS.

	A bug was found in the REST API filter system that was the result of an
update of django-filter some time ago. This has now been patched in #412 [https://github.com/danielquinn/paperless/issues/412].
Thanks to thepill [https://github.com/thepill] for spotting it!

2.3.0

	Support for consuming plain text & markdown documents was added by
Joshua Taillon [https://github.com/jat255]! This was a long-requested feature, and it’s addition is
likely to be greatly appreciated by the community: #395 [https://github.com/danielquinn/paperless/pull/395] Thanks also to
David Martin [https://github.com/ddddavidmartin] for his assistance on the issue.

	dubit0 [https://github.com/dubit0] found & fixed a bug that prevented management commands from running
before we had an operational database: #396 [https://github.com/danielquinn/paperless/pull/396]

	Joshua also added a simple update to the thumbnail generation process to
improve performance: #399 [https://github.com/danielquinn/paperless/pull/399]

	As his last bit of effort on this release, Joshua also added some code to
allow you to view the documents inline rather than download them as an
attachment. #400 [https://github.com/danielquinn/paperless/pull/400]

	Finally, ahyear [https://github.com/ahyear] found a slip in the Docker documentation and patched it.
#401 [https://github.com/danielquinn/paperless/pull/401]

2.2.1

	Kyle Lucy [https://github.com/kmlucy] reported a bug quickly after the release of 2.2.0 where we broke
the DISABLE_LOGIN feature: #392 [https://github.com/danielquinn/paperless/issues/392].

2.2.0

	Thanks to dadosch [https://github.com/dadosch], Wolfgang Mader [https://github.com/wmader], and Tim Brooks [https://github.com/brookst] this is the first
version of Paperless that supports Django 2.0! As a result of their hard
work, you can now also run Paperless on Python 3.7 as well: #386 [https://github.com/danielquinn/paperless/issues/386] &
#390 [https://github.com/danielquinn/paperless/pull/390].

	Stéphane Brunner [https://github.com/sbrunner] added a few lines of code that made tagging interface a
lot easier on those of us with lots of different tags: #391 [https://github.com/danielquinn/paperless/pull/391].

	Kilian Koeltzsch [https://github.com/kiliankoe] noticed a bug in how we capture & automatically create
tags, so that’s fixed now too: #384 [https://github.com/danielquinn/paperless/issues/384].

	erikarvstedt [https://github.com/erikarvstedt] tweaked the behaviour of the test suite to be better behaved
for packaging environments: #383 [https://github.com/danielquinn/paperless/pull/383].

	Lukasz Soluch [https://github.com/LukaszSolo] added CORS support to make building a new Javascript-based
front-end cleaner & easier: #387 [https://github.com/danielquinn/paperless/pull/387].

2.1.0

	Enno Lohmeier [https://github.com/elohmeier] added three simple features that make Paperless a lot more
user (and developer) friendly:

	There’s a new search box on the front page: #374 [https://github.com/danielquinn/paperless/pull/374].

	The correspondents & tags pages now have a column showing the number of
relevant documents: #375 [https://github.com/danielquinn/paperless/pull/375].

	The Dockerfile has been tweaked to build faster for those of us who are
doing active development on Paperless using the Docker environment:
#376 [https://github.com/danielquinn/paperless/pull/376].

	You now also have the ability to customise the interface to your heart’s
content by creating a file called overrides.css and/or overrides.js
in the root of your media directory. Thanks to Mark McFate [https://github.com/SummittDweller] for this
idea: #371 [https://github.com/danielquinn/paperless/issues/371]

2.0.0

This is a big release as we’ve changed a core-functionality of Paperless: we no
longer encrypt files with GPG by default.

The reasons for this are many, but it boils down to that the encryption wasn’t
really all that useful, as files on-disk were still accessible so long as you
had the key, and the key was most typically stored in the config file. In
other words, your files are only as safe as the paperless user is. In
addition to that, the contents of the documents were never encrypted, so
important numbers etc. were always accessible simply by querying the database.
Still, it was better than nothing, but the consensus from users appears to be
that it was more an annoyance than anything else, so this feature is now turned
off unless you explicitly set a passphrase in your config file.

Migrating from 1.x

Encryption isn’t gone, it’s just off for new users. So long as you have
PAPERLESS_PASSPHRASE set in your config or your environment, Paperless
should continue to operate as it always has. If however, you want to drop
encryption too, you only need to do two things:

	Run ./manage.py migrate && ./manage.py change_storage_type gpg unencrypted.
This will go through your entire database and Decrypt All The Things.

	Remove PAPERLESS_PASSPHRASE from your paperless.conf file, or simply
stop declaring it in your environment.

Special thanks to erikarvstedt [https://github.com/erikarvstedt], matthewmoto [https://github.com/matthewmoto], and mcronce [https://github.com/mcronce] who did the
bulk of the work on this big change.

1.4.0

	Quentin Dawans [https://github.com/ovv] has refactored the document consumer to allow for some
command-line options. Notably, you can now direct it to consume from a
particular --directory, limit the --loop-time, set the time between
mail server checks with --mail-delta or just run it as a one-off with
--one-shot. See #305 [https://github.com/danielquinn/paperless/issues/305] & #313 [https://github.com/danielquinn/paperless/pull/313] for more information.

	Refactor the use of travis/tox/pytest/coverage into two files:
.travis.yml and setup.cfg.

	Start generating requirements.txt from a Pipfile. I’ll probably switch over
to just using pipenv in the future.

	All for a alternative FreeBSD-friendly location for paperless.conf.
Thanks to Martin Arendtsen [https://github.com/Arendtsen] who provided this (#322 [https://github.com/danielquinn/paperless/pull/322]).

	Document consumption events are now logged in the Django admin events log.
Thanks to CkuT [https://github.com/CkuT] for doing the legwork on this one and to Quentin Dawans [https://github.com/ovv]
& David Martin [https://github.com/ddddavidmartin] for helping to coordinate & work out how the feature would
be developed.

	erikarvstedt [https://github.com/erikarvstedt] contributed a pull request (#328 [https://github.com/danielquinn/paperless/pull/328]) to add --noreload
to the default server start process. This helps reduce the load imposed
by the running webservice.

	Through some discussion on #253 [https://github.com/danielquinn/paperless/issues/253] and #323 [https://github.com/danielquinn/paperless/issues/323], we’ve removed a few of the
hardcoded URL values to make it easier for people to host Paperless on a
subdirectory. Thanks to Quentin Dawans [https://github.com/ovv] and Kyle Lucy [https://github.com/kmlucy] for helping to
work this out.

	The clickable area for documents on the listing page has been increased to a
more predictable space thanks to a glorious hack from erikarvstedt [https://github.com/erikarvstedt] in
#344 [https://github.com/danielquinn/paperless/pull/344].

	Strubbl [https://github.com/strubbl] noticed an annoying bug in the bash script wrapping the Docker
entrypoint and fixed it with some very creating Bash skills: #352 [https://github.com/danielquinn/paperless/pull/352].

	You can now use the search field to find documents by tag thanks to
thinkjk [https://github.com/thinkjk]’s first ever issue: #354 [https://github.com/danielquinn/paperless/issues/354].

	Inotify is now being used to detect additions to the consume directory thanks
to some excellent work from erikarvstedt [https://github.com/erikarvstedt] on #351 [https://github.com/danielquinn/paperless/pull/351]

1.3.0

	You can now run Paperless without a login, though you’ll still have to create
at least one user. This is thanks to a pull-request from matthewmoto [https://github.com/matthewmoto]:
#295 [https://github.com/danielquinn/paperless/pull/295]. Note that logins are still required by default, and that you need
to disable them by setting PAPERLESS_DISABLE_LOGIN="true" in your
environment or in /etc/paperless.conf.

	Fix for #303 [https://github.com/danielquinn/paperless/issues/303] where sketchily-formatted documents could cause the consumer
to break and insert half-records into the database breaking all sorts of
things. We now capture the return codes of both convert and unpaper
and fail-out nicely.

	Fix for additional date types thanks to input from Isaac [https://github.com/isaacsando] and code from
BastianPoe [https://github.com/BastianPoe] (#301 [https://github.com/danielquinn/paperless/issues/301]).

	Fix for running migrations in the Docker container (#299 [https://github.com/danielquinn/paperless/issues/299]). Thanks to
Georgi Todorov [https://github.com/TeraHz] for the fix (#300 [https://github.com/danielquinn/paperless/pull/300]) and to Pit [https://github.com/pitkley] for the review.

	Fix for Docker cases where the issuing user is not UID 1000. This was a
collaborative fix between Jeffrey Portman [https://github.com/ChromoX] and Pit [https://github.com/pitkley] in #311 [https://github.com/danielquinn/paperless/pull/311] and
#312 [https://github.com/danielquinn/paperless/pull/312] to fix #306 [https://github.com/danielquinn/paperless/issues/306].

	Patch the historical migrations to support MySQL’s um, interesting way of
handing indexes (#308 [https://github.com/danielquinn/paperless/issues/308]). Thanks to Simon Taddiken [https://github.com/skuzzle] for reporting the
problem and helping me find where to fix it.

1.2.0

	New Docker image, now based on Alpine, thanks to the efforts of addadi [https://github.com/addadi]
and Pit [https://github.com/pitkley]. This new image is dramatically smaller than the Debian-based
one, and it also has a new home on Docker Hub [https://hub.docker.com/r/danielquinn/paperless/]. A proper thank-you to
Pit [https://github.com/pitkley] for hosting the image on his Docker account all this time, but after
some discussion, we decided the image needed a more official-looking home.

	BastianPoe [https://github.com/BastianPoe] has added the long-awaited feature to automatically skip the
OCR step when the PDF already contains text. This can be overridden by
setting PAPERLESS_OCR_ALWAYS=YES either in your paperless.conf or
in the environment. Note that this also means that Paperless now requires
libpoppler-cpp-dev to be installed. Important: You’ll need to run
pip install -r requirements.txt after the usual git pull to
properly update.

	BastianPoe [https://github.com/BastianPoe] has also contributed a monumental amount of work (#291 [https://github.com/danielquinn/paperless/pull/291]) to
solving #158 [https://github.com/danielquinn/paperless/issues/158]: setting the document creation date based on finding a date
in the document text.

1.1.0

	Fix for #283 [https://github.com/danielquinn/paperless/issues/283], a redirect bug which broke interactions with
paperless-desktop. Thanks to chris-aeviator [https://github.com/chris-aeviator] for reporting it.

	Addition of an optional new financial year filter, courtesy of
David Martin [https://github.com/ddddavidmartin] #256 [https://github.com/danielquinn/paperless/pull/256]

	Fixed a typo in how thumbnails were named in exports #285 [https://github.com/danielquinn/paperless/pull/285], courtesy of
Dan Panzarella [https://github.com/pzl]

1.0.0

	Upgrade to Django 1.11. You’ll need to run
``pip install -r requirements.txt`` after the usual ``git pull`` to
properly update.

	Replace the templatetag-based hack we had for document listing in favour of
a slightly less ugly solution in the form of another template tag with less
copypasta.

	Support for multi-word-matches for auto-tagging thanks to an excellent
patch from ishirav [https://github.com/ishirav] #277 [https://github.com/danielquinn/paperless/pull/277].

	Fixed a CSS bug reported by Stefan Hagen [https://github.com/xkpd3] that caused an overlapping of
the text and checkboxes under some resolutions #272 [https://github.com/danielquinn/paperless/issues/272].

	Patched the Docker config to force the serving of static files. Credit for
this one goes to dev-rke [https://github.com/dev-rke] via #248 [https://github.com/danielquinn/paperless/issues/248].

	Fix file permissions during Docker start up thanks to Pit [https://github.com/pitkley] on #268 [https://github.com/danielquinn/paperless/pull/268].

	Date fields in the admin are now expressed as HTML5 date fields thanks to
Lukas Winkler [https://github.com/Findus23]’s issue #278 [https://github.com/danielquinn/paperless/issues/248]

0.8.0

	Paperless can now run in a subdirectory on a host (/paperless), rather
than always running in the root (/) thanks to maphy-psd [https://github.com/maphy-psd]’s work on
#255 [https://github.com/danielquinn/paperless/pull/255].

0.7.0

	Potentially breaking change: As per #235 [https://github.com/danielquinn/paperless/issues/235], Paperless will no longer
automatically delete documents attached to correspondents when those
correspondents are themselves deleted. This was Django’s default
behaviour, but didn’t make much sense in Paperless’ case. Thanks to
Thomas Brueggemann [https://github.com/thomasbrueggemann] and David Martin [https://github.com/ddddavidmartin] for their input on this one.

	Fix for #232 [https://github.com/danielquinn/paperless/issues/232] wherein Paperless wasn’t recognising .tif files
properly. Thanks to ayounggun [https://github.com/ayounggun] for reporting this one and to
Kusti Skytén [https://github.com/kskyten] for posting the correct solution in the Github issue.

0.6.0

	Abandon the shared-secret trick we were using for the POST API in favour
of BasicAuth or Django session.

	Fix the POST API so it actually works. #236 [https://github.com/danielquinn/paperless/issues/236]

	Breaking change: We’ve dropped the use of PAPERLESS_SHARED_SECRET
as it was being used both for the API (now replaced with a normal auth)
and form email polling. Now that we’re only using it for email, this
variable has been renamed to PAPERLESS_EMAIL_SECRET. The old value
will still work for a while, but you should change your config if you’ve
been using the email polling feature. Thanks to Joshua Gilman [https://github.com/jmgilman] for all
the help with this feature.

0.5.0

	Support for fuzzy matching in the auto-tagger & auto-correspondent systems
thanks to Jake Gysland [https://github.com/jgysland]’s patch #220 [https://github.com/danielquinn/paperless/pull/220].

	Modified the Dockerfile to prepare an export directory (#212 [https://github.com/danielquinn/paperless/pull/212]). Thanks
to combined efforts from Pit [https://github.com/pitkley] and Strubbl [https://github.com/strubbl] in working out the kinks on
this one.

	Updated the import/export scripts to include support for thumbnails. Big
thanks to CkuT [https://github.com/CkuT] for finding this shortcoming and doing the work to get
it fixed in #224 [https://github.com/danielquinn/paperless/pull/224].

	All of the following changes are thanks to David Martin [https://github.com/ddddavidmartin]:
* Bumped the dependency on pyocr to 0.4.7 so new users can make use of
Tesseract 4 if they so prefer (#226 [https://github.com/danielquinn/paperless/pull/226]).
* Fixed a number of issues with the automated mail handler (#227 [https://github.com/danielquinn/paperless/pull/227], #228 [https://github.com/danielquinn/paperless/pull/228])
* Amended the documentation for better handling of systemd service files (#229 [https://github.com/danielquinn/paperless/pull/229])
* Amended the Django Admin configuration to have nice headers (#230 [https://github.com/danielquinn/paperless/pull/230])

0.4.1

	Fix for #206 [https://github.com/danielquinn/paperless/issues/206] wherein the pluggable parser didn’t recognise files with
all-caps suffixes like .PDF

0.4.0

	Introducing reminders. See #199 [https://github.com/danielquinn/paperless/issues/199] for more information, but the short
explanation is that you can now attach simple notes & times to documents
which are made available via the API. Currently, the default API
(basically just the Django admin) doesn’t really make use of this, but
Thomas Brueggemann [https://github.com/thomasbrueggemann] over at Paperless Desktop [https://github.com/thomasbrueggemann/paperless-desktop] has said that he would
like to make use of this feature in his project.

0.3.6

	Fix for #200 [https://github.com/danielquinn/paperless/issues/200] (!!) where the API wasn’t configured to allow updating the
correspondent or the tags for a document.

	The content field is now optional, to allow for the edge case of a
purely graphical document.

	You can no longer add documents via the admin. This never worked in the
first place, so all I’ve done here is remove the link to the broken form.

	The consumer code has been heavily refactored to support a pluggable
interface. Install a paperless consumer via pip and tell paperless about
it with an environment variable, and you’re good to go. Proper
documentation is on its way.

0.3.5

	A serious facelift for the documents listing page wherein we drop the
tabular layout in favour of a tiled interface.

	Users can now configure the number of items per page.

	Fix for #171 [https://github.com/danielquinn/paperless/issues/171]: Allow users to specify their own SECRET_KEY value.

	Moved the dotenv loading to the top of settings.py

	Fix for #112 [https://github.com/danielquinn/paperless/issues/112]: Added checks for binaries required for document
consumption.

0.3.4

	Removal of django-suit due to a licensing conflict I bumped into in 0.3.3.
Note that you can use Django Suit with Paperless, but only in a
non-profit situation as their free license prohibits for-profit use. As a
result, I can’t bundle Suit with Paperless without conflicting with the
GPL. Further development will be done against the stock Django admin.

	I shrunk the thumbnails a little ‘cause they were too big for me, even on
my high-DPI monitor.

	BasicAuth support for document and thumbnail downloads, as well as the Push
API thanks to @thomasbrueggemann. See #179 [https://github.com/danielquinn/paperless/pull/179].

0.3.3

	Thumbnails in the UI and a Django-suit -based face-lift courtesy of @ekw!

	Timezone, items per page, and default language are now all configurable,
also thanks to @ekw.

0.3.2

	Fix for #172 [https://github.com/danielquinn/paperless/issues/172]: defaulting ALLOWED_HOSTS to ["*"] and allowing the
user to set her own value via PAPERLESS_ALLOWED_HOSTS should the need
arise.

0.3.1

	Added a default value for CONVERT_BINARY

0.3.0

	Updated to using django-filter 1.x

	Added some system checks so new users aren’t confused by misconfigurations.

	Consumer loop time is now configurable for systems with slow writes. Just
set PAPERLESS_CONSUMER_LOOP_TIME to a number of seconds. The default
is 10.

	As per #44 [https://github.com/danielquinn/paperless/issues/44], we’ve removed support for PAPERLESS_CONVERT,
PAPERLESS_CONSUME, and PAPERLESS_SECRET. Please use
PAPERLESS_CONVERT_BINARY, PAPERLESS_CONSUMPTION_DIR, and
PAPERLESS_SHARED_SECRET respectively instead.

0.2.0

	#150 [https://github.com/danielquinn/paperless/pull/150]: The media root is now a variable you can set in
paperless.conf.

	#148 [https://github.com/danielquinn/paperless/pull/148]: The database location (sqlite) is now a variable you can set in
paperless.conf.

	#146 [https://github.com/danielquinn/paperless/issues/146]: Fixed a bug that allowed unauthorised access to the /fetch
URL.

	#131 [https://github.com/danielquinn/paperless/issues/131]: Document files are now automatically removed from disk when
they’re deleted in Paperless.

	#121 [https://github.com/danielquinn/paperless/issues/121]: Fixed a bug where Paperless wasn’t setting document creation time
based on the file naming scheme.

	#81 [https://github.com/danielquinn/paperless/issues/81]: Added a hook to run an arbitrary script after every document is
consumed.

	#98 [https://github.com/danielquinn/paperless/issues/98]: Added optional environment variables for ImageMagick so that it
doesn’t explode when handling Very Large Documents or when it’s just
running on a low-memory system. Thanks to Florian Harr [https://github.com/evils] for his help on
this one.

	#89 [https://github.com/danielquinn/paperless/issues/89] Ported the auto-tagging code to correspondents as well. Thanks to
Justin Snyman [https://github.com/stringlytyped] for the pointers in the issue queue.

	Added support for guessing the date from the file name along with the
correspondent, title, and tags. Thanks to Tikitu de Jager [https://github.com/tikitu] for his pull
request that I took forever to merge and to Pit [https://github.com/pitkley] for his efforts on the
regex front.

	#94 [https://github.com/danielquinn/paperless/issues/94]: Restored support for changing the created date in the UI. Thanks
to Martin Honermeyer [https://github.com/djmaze] and Tim White [https://github.com/timwhite] for working with me on this.

0.1.1

	Potentially Breaking Change: All references to “sender” in the code
have been renamed to “correspondent” to better reflect the nature of the
property (one could quite reasonably scan a document before sending it to
someone.)

	#67 [https://github.com/danielquinn/paperless/issues/67]: Rewrote the document exporter and added a new importer that allows
for full metadata retention without depending on the file name and
modification time. A big thanks to Tikitu de Jager [https://github.com/tikitu], Pit [https://github.com/pitkley],
Florian Jung [https://github.com/the01], and Christopher Luu [https://github.com/nuudles] for their code snippets and
contributing conversation that lead to this change.

	#20 [https://github.com/danielquinn/paperless/issues/20]: Added unpaper support to help in cleaning up the scanned image
before it’s OCR’d. Thanks to Pit [https://github.com/pitkley] for this one.

	#71 [https://github.com/danielquinn/paperless/issues/71] Added (encrypted) thumbnails in anticipation of a proper UI.

	#68 [https://github.com/danielquinn/paperless/issues/68]: Added support for using a proper config file at
/etc/paperless.conf and modified the systemd unit files to use it.

	Refactored the Vagrant installation process to use environment variables
rather than asking the user to modify settings.py.

	#44 [https://github.com/danielquinn/paperless/issues/44]: Harmonise environment variable names with constant names.

	#60 [https://github.com/danielquinn/paperless/issues/60]: Setup logging to actually use the Python native logging framework.

	#53 [https://github.com/danielquinn/paperless/issues/53]: Fixed an annoying bug that caused .jpeg and .JPG images
to be imported but made unavailable.

0.1.0

	Docker support! Big thanks to Wayne Werner [https://github.com/waynew], Brian Conn [https://github.com/TheConnMan], and
Tikitu de Jager [https://github.com/tikitu] for this one, and especially to Pit [https://github.com/pitkley]
who spearheadded this effort.

	A simple REST API is in place, but it should be considered unstable.

	Cleaned up the consumer to use temporary directories instead of a single
scratch space. (Thanks Pit [https://github.com/pitkley])

	Improved the efficiency of the consumer by parsing pages more intelligently
and introducing a threaded OCR process (thanks again Pit [https://github.com/pitkley]).

	#45 [https://github.com/danielquinn/paperless/issues/45]: Cleaned up the logic for tag matching. Reported by darkmatter [https://github.com/darkmatter].

	#47 [https://github.com/danielquinn/paperless/issues/47]: Auto-rotate landscape documents. Reported by Paul [https://github.com/polo2ro] and fixed by
Pit [https://github.com/pitkley].

	#48 [https://github.com/danielquinn/paperless/issues/48]: Matching algorithms should do so on a word boundary (darkmatter [https://github.com/darkmatter])

	#54 [https://github.com/danielquinn/paperless/issues/54]: Documented the re-tagger (zedster [https://github.com/zedster])

	#57 [https://github.com/danielquinn/paperless/issues/57]: Make sure file is preserved on import failure (darkmatter [https://github.com/darkmatter])

	Added tox with pep8 checking

0.0.6

	Added support for parallel OCR (significant work from Pit [https://github.com/pitkley])

	Sped up the language detection (significant work from Pit [https://github.com/pitkley])

	Added simple logging

0.0.5

	Added support for image files as documents (png, jpg, gif, tiff)

	Added a crude means of HTTP POST for document imports

	Added IMAP mail support

	Added a re-tagging utility

	Documentation for the above as well as data migration

0.0.4

	Added automated tagging basted on keyword matching

	Cleaned up the document listing page

	Removed User and Group from the admin

	Added pytz to the list of requirements

0.0.3

	Added basic tagging

0.0.2

	Added language detection

	Added datestamps to document_exporter.

	Changed settings.TESSERACT_LANGUAGE to settings.OCR_LANGUAGE.

0.0.1

	Initial release

Index

 _static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Paperless

 		
 Requirements

 		
 Problems with Imagemagick & PDFs

 		
 Python-specific Requirements: No Virtualenv

 		
 Python-specific Requirements: Virtualenv

 		
 Documentation

 		
 Setup

 		
 Download

 		
 Installation & Configuration

 		
 Standard (Bare Metal)

 		
 Docker Method

 		
 Making Things a Little more Permanent

 		
 Using a Real Webserver

 		
 Consumption

 		
 The Consumption Directory

 		
 Hooking into the Consumption Process

 		
 IMAP (Email)

 		
 HTTP POST

 		
 The REST API

 		
 Uploading

 		
 Utilities

 		
 The Webserver

 		
 How to Use It

 		
 The Consumer

 		
 How to Use It

 		
 The Exporter

 		
 How to Use It

 		
 The Importer

 		
 How to Use It

 		
 The Re-tagger

 		
 How to Use It

 		
 Guesswork

 		
 File Naming

 		
 Do I have to be so strict about naming?

 		
 Reading the Document Contents

 		
 How Do I Set Up These Matching Algorithms?

 		
 Migrating, Updates, and Backups

 		
 Backing Up

 		
 Restoring

 		
 Updates

 		
 Customising Paperless

 		
 Overrides

 		
 An important note about customisation

 		
 Extending Paperless

 		
 Parsers

 		
 parsers.py

 		
 signals.py

 		
 apps.py

 		
 Finally

 		
 An Example

 		
 Troubleshooting

 		
 Consumer warns OCR for XX failed

 		
 Consumer dies with convert: unable to extent pixel cache

 		
 DecompressionBombWarning and/or no text in the OCR output

 		
 Contributing to Paperless

 		
 How to Get Your Changes Rolled Into Paperless

 		
 Pep8

 		
 Additional Style Guides

 		
 The Code of Conduct

 		
 Scanner Recommendations

 		
 Changelog

 		
 2.7.0

 		
 2.6.1

 		
 2.6.0

 		
 2.5.0

 		
 2.4.0

 		
 2.3.0

 		
 2.2.1

 		
 2.2.0

 		
 2.1.0

 		
 2.0.0

 		
 Migrating from 1.x

 		
 1.4.0

 		
 1.3.0

 		
 1.2.0

 		
 1.1.0

 		
 1.0.0

 		
 0.8.0

 		
 0.7.0

 		
 0.6.0

 		
 0.5.0

 		
 0.4.1

 		
 0.4.0

 		
 0.3.6

 		
 0.3.5

 		
 0.3.4

 		
 0.3.3

 		
 0.3.2

 		
 0.3.1

 		
 0.3.0

 		
 0.2.0

 		
 0.1.1

 		
 0.1.0

 		
 0.0.6

 		
 0.0.5

 		
 0.0.4

 		
 0.0.3

 		
 0.0.2

 		
 0.0.1

_static/file.png

_static/down-pressed.png

_static/down.png

_static/screenshot.png

_static/minus.png

_static/plus.png

_static/up-pressed.png

